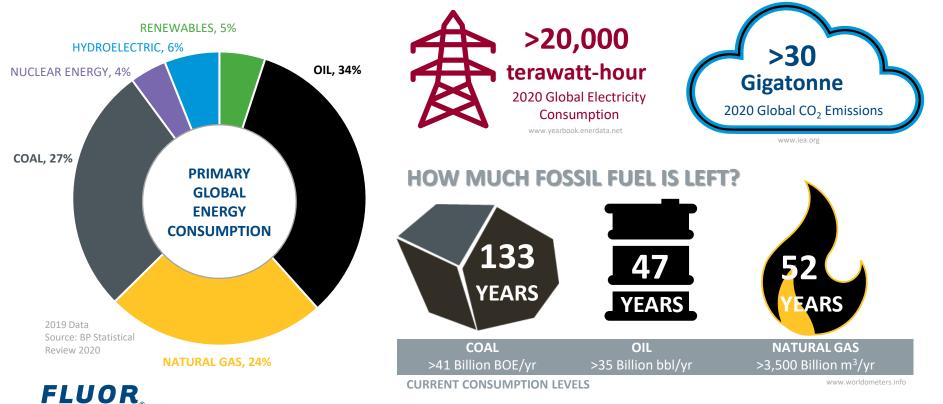
Role of Biomass Gasification in Energy Transition

Sunil Singhal Soumya Jyoti Choudhury

FLUOR

Emerging Technologies / Solutions for Waste & Biomass Waste-to-Energy, 2022 November 15, 2022



Agenda

- Global Energy Scenario
- > Renewable Energy for Transport- How to Achieve It?
- > Challenges with Continuous Supply of Green Power from Solar and Wind
- Other Sources of Green Power Generation
- Methods of Green Power Storage
- Role of Biomass as Source of Energy
- Biomass Gasification + Water Electrolysis Hybrid Plant
- > Key Features of Gasification + Electrolysis Hybrid Process
- Summary

FLUOR

Global Energy Scenario

Renewable Energy for Transport- How to Achieve It?

- Batteries charged with green power, but has following challenges:
 - Not suitable for heavy vehicles and long-haul transport
 - High battery weight for heavy vehicles
 - Require multiple in transit charging
 - High overall transport time
 - Inadequate charging infrastructure
 - Continuous green power supply
 - Limited life of batteries
 - Disposal & recycling of spent batteries

Renewable Energy for Transport- How to Achieve It? (Cont...)

- Emerging alternates \rightarrow Green H2, NH3, MeOH, etc.
- Water electrolysis \rightarrow Most sought-after source
- Hinderance \rightarrow Continuous supply of affordable renewable power

Challenges with Continuous Supply of Green Power from Solar and Wind

- Solar & Wind Energy \rightarrow Most widely and abundantly available, but:
 - Availability is geography and weather dependent
 - Average availability \rightarrow solar ~25% and wind ~35%
 - Somewhat complimentary, still leaves gap of ~40-50%
 - Needs to be complimented by other sources
 - Alternately power needs to be stored

Other Sources of Green Power Generation

Source of Energy	Advantages	Disadvantages
Biomass	 Easily & continuously available Process well proven Installation cost standardized Helps to promote local economy Helps in pollution control and waste management 	 Low bulk density makes long distance transport expensive Ensuring consistent quality
Hydro	 Process well proven Naturally available 	 Geography dependent Weather dependent Near saturation in most countries

Other Sources of Green Power Generation (Cont...)

Source of Energy	Advantages	Disadvantages
Geothermal	Naturally available	 Only limited small-scale installations Not easily accessible
Tidal	Naturally available	 Technology at nascent stage Only possible around seashores
Ocean Current	Naturally available	 Technology at nascent stage Not easily accessible
Ocean Wave	Naturally available	 Technology at nascent stage Not easily accessible

Methods of Green Power Storage

Method	Advantage	Disadvantage
Battery Storage	 Proven process Suppliers available Can be installed anywhere 	 Battery self discharges & capacity ↓ with time Needs to be replaced every 5-6 years Need expensive large battery bank for commercial energy storage Safety issues like high voltage, arc-flash, fire and toxicity Scarcity of raw materials like Li, Co, Ni, V, etc.
Pumped Hydro	1. Water can be reused	 Geography dependent High installation cost ~50% efficiency loss

Methods of Green Power Storage (Cont...)

Method	Advantage	Disadvantage
Compressed Air	1. Can be installed anywhere	 High installation cost Limited equipment life due to cyclic operation ~50% efficiency loss
H2 Storage	 H2 is ready to use as source of energy Proven process Suppliers available Can be installed anywhere 	 Oversized Electrolysis by 2-3 times Compression & storage is expensive Limited equipment life due to cyclic operation

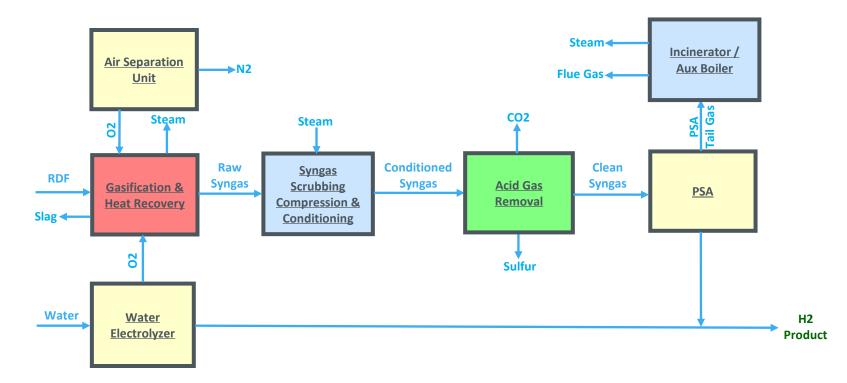
Role of Biomass as Source of Energy

- Biomass is generated continuously
- Can produce power, bio CNG, EtOH
- Can be gasified to produce H2 and derivatives like NH3, MeOH, Urea etc.
- Energy produced from biomass is carbon neutral
- Permanent and clean solution to waste disposal problem
- Ground water and soil contamination at landfill sites can be avoided
- CH4 emission from landfill sites can be avoided
- CH4 is 25 times more potent green house gas than CO2
- Can free-up real estate at landfill sites
- Can promote local economy
 FLUOR.

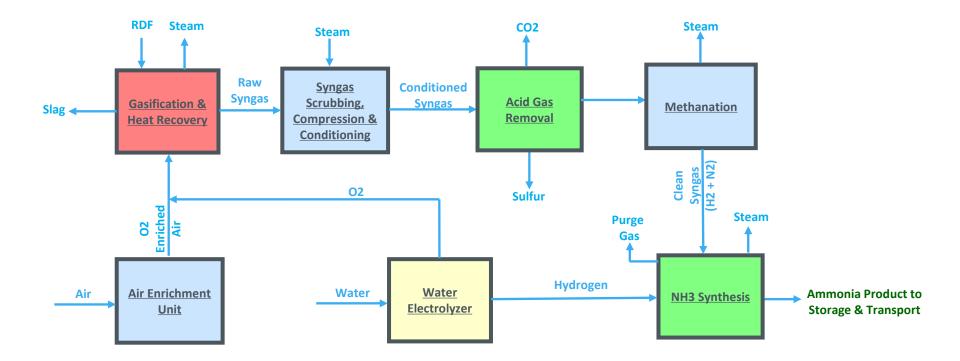
Worldwide Biomass Generation Scenario

Annual municipal solid waste generated per capita (kilograms/capita/day)

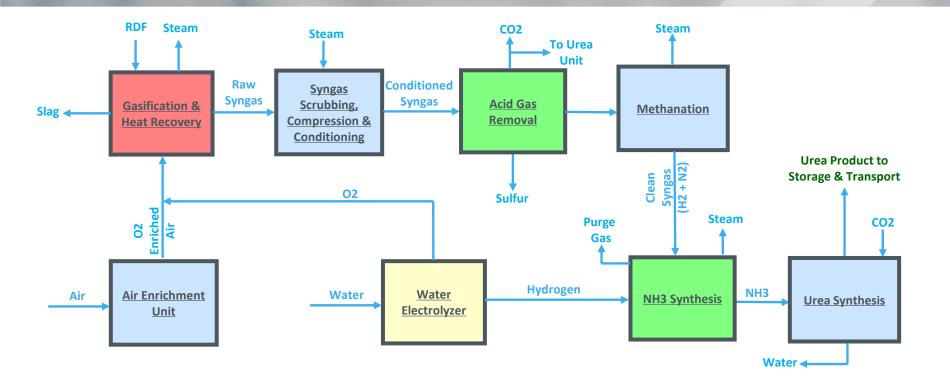
Source: Kaza, Silpa; Yao, Lisa C.; Bhada-Tata, Perinaz; Van Woerden, Frank. 2018. What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050.


FLUOR

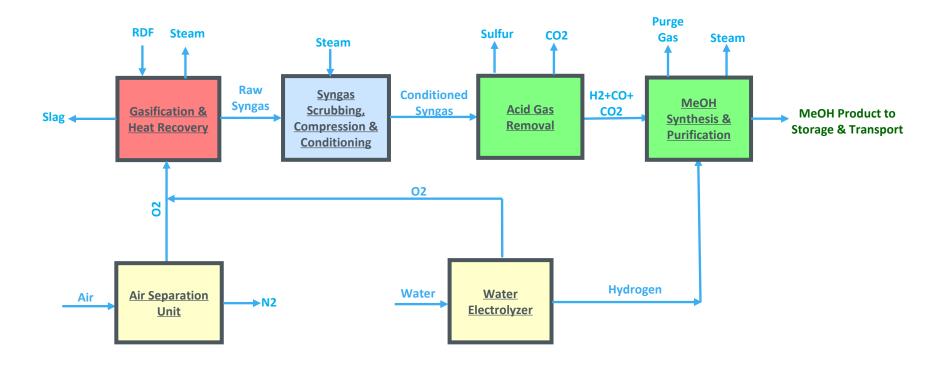
- 2.0 billion tonnes estimated in 2016
- Predicted to increase to 3.4 billion tonnes/year by 2050
- Other waste generation (kg/capita/day avg)
 - 12.73 industrial waste
 - 3.35 agricultural waste
 - 1.68 construction and demolition waste
 - 0.32 hazardous waste
 - 0.25 medical waste
 - 0.02 electronic waste


Biomass Gasification + Water Electrolysis Hybrid Plant for Green Hydrogen / Green Ammonia / Green Methanol / Green Urea Production

Biomass Gasification + Water Electrolysis to H2



Biomass Gasification + Water Electrolysis to NH3



Biomass Gasification + Water Electrolysis to Urea

FLUOR

Biomass Gasification + Water Electrolysis to Methanol

Key Features of Gasification + Electrolysis Hybrid Process

- Maximizes potential of biomass gasification as well as electrolysis
- Baseload operation with biomass gasification and capacity ramp-up when solar / wind energy is available
- Captive power generation using biomass when solar/wind energy is not available
- Use of by-product O2 from electrolysis in gasifier reduces ASU CAPEX and power consumption
- Cryogenic N2 unit is required if NH3 is produced using H2 from electrolysis
- Liquid NH3 is a great carrier of long-haul transport of H2 using existing infrastructure

Key Features of Gasification + Electrolysis Hybrid Process (Cont...)

- Provides flexibility to produce green MeOH, EtOH, other liquid fuels, chemicals, urea and plastics using biogenic carbon from AGR section
- > The hybrid process makes the products carbon negative
- Improved economics with utilization of synergy and by-products
- Provides long-term sustainable solution for waste management while generating high value carbon negative products

- To fully decarbonize the economy 24/7 green energy is required
- In addition to solar and wind which are intermittent, biomass can play an important role in achieving 24/7 green energy supply since it is renewable and available 24/7 round the year
- Hybrid solution of biomass gasification and water electrolysis can be a viable option for production of carbon negative products
- Syngas produced from gasification can be processed to give a wide variety of products depending upon market conditions and economic / strategic considerations
- Use of biomass also solves the problem of waste management, disposal and associated cost

One solution doesn't fit everywhere. To address the mega challenge of achieving 100% carbon neutral economy, all the renewable / carbon neutral sources of energy and associated technologies should be harmonized and used to compliment each other rather than compete.

FLUOR

STAY CONNECTED..

Sunil Singhal Sunil.Singhal@fluor.com +91.124.457.0700 Extn. 1649 Soumya Jyoti Choudhury <u>Soumya.Jyoti.Choudhury@fluor.com</u> +91.124.457.0700 Extn. 1395

You

Tube

FLUOR

http://www.fluor.com

http://www.linkedin.com/company/fluor

@FluorCorp

http://www.youtube.com/user/FluorCorporation