

WASTE TO ENERGY -Incineration Technology

Presented By

J. Gladstone Evans (HOD - Thermal Department)

Mobile: 9840046888, Email: jgladstoneevans@avant-garde.co.in

AVANT-GARDE

1	Brief Corporate Presentation
2	Our Experience in WTE Projects
3	WTE Technologies
4	Incineration Technology
5	Heat Recovery System
6	Pollution Control System
7	WTE – Operating Plants & Concclusion

AGENDA

Group Companies

AVANT-GARDE

Engineers and Consultants (P) Limited - Chennai

AVANT-GARDE

Systems and Controls (P) Limited - Chennai

ConsultancyandDetailedEngineeringServices&SupplyofPowerPlantEquipment,SiteServices,O&M, PlantRevamping, etc

AVANT-GARDE

AVANT-GARDE

Engineers and Consultants FZC - Shariah

Consultancy and Detailed Engineering Services for Overseas Projects

COMPANY INTRODUCTION

- Founded by a group of Technocrats in 1990
- Innovative solutions to the industry
- Committed to work for Engineering Excellence
- ✤ 30+ years of experience in Power Industry
- Executed projects in 40+ Countries
- ✤ 2000+ Projects and 500+ Clients
- ✤ 8000MW+ of Power projects
- Multi-disciplinary organization

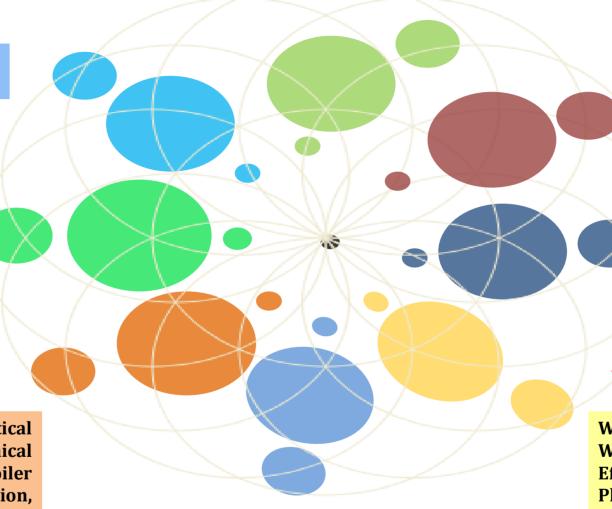
AVANT-GARDE

200+ professionals

"established with an innovative outlook, to do business with a mission and to provide Engineering with Excellence "

Present Area of Business

Power Plants


Co-Gen, IPP, CPP, Biomass, MSW, WHRSG, DG, GTG

Distillery / Ethanol Plants

Multi-feed & Multi-Product Distillery, Zero Liquid Discharge, Slop Incineration Projects

Supply & Services

Supply of Boiler critical components, Energy and Technical audits, Quality audits, Boiler revamping, Capacity up- gradation, RLA study, Third party Inspection services, etc

Solar Plants

Design & Detailed Engineering

Sugar Plants

Raw Sugar, Plantation White, Refined Sugar

Bio-CNG Plants

Press mud to Bio -CNG

Boiler Design & Detailing

Grate Boiler, AFBC, WHRSG, Vinasse Fired

Water, Wastewater Treatment and ZLD Plants

WaterTreatmentplants,SeaWaterDesalinationPlants,EffluentTreatment & RecyclingPlantsCondensatePolishingUnits, SewageTreatmentPlants

Overall Power Projects

S. No	Description	Commissioned		Under various stages		Total Capacity	Total No. of Plants
		Nos.	Capacity	Nos.	Capacity		
1	Cogeneration Plants	105	2298MW	41	1078MW	3376MW	146
2	Captive Power Plants	86	2662 MW	45	1282MW	3944MW	131
3	Biomass Power Plants	53	493MW	7	95MW	588MW	60
4	MSW Plants	3	57MW	6	83MW	140MW	9
5	Solar Power Plants	107	1990MW	14	905 MW	2895MW	121
6	Slop incineration Projects	24	2468 KLPD	25	3153KLPD	5522KLPD	49
7	Distillery Plant with ETP	14	1639 KLPD	27	4526KLPD	6165KLPD	41
8	Sugar Plants	10	62500TCD	9	53000TCD	115000TCD	19
9	Flue Gas Desulphurisation	4	180+MW	3	550+MW	730+MW	7

AVANT-GARDE

MSW Projects Commissioned & Projection for 2023

• The first **6.0MW RDF based power plant** was commissioned in Vijayawada – AP.

• DMSWSL has commissioned **24MW DMI based WTE plant (2 x 600 = 1200TPD)**, which is in operation from 2016 onwards

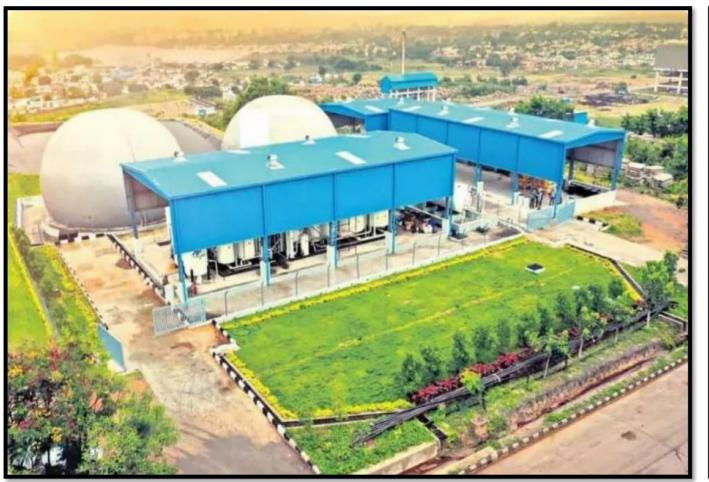
• HiMSW – Hyderbad has commissined **27MW DMI based WTE plant (2 x 600 = 1200TPD)**, which is commissioned from Aug 2020 onward

• Six (6) WTE Projects of cumulative capacity of 83MW is under Erection.

AVANT-GARDE

6MW

2007


- Detailed Project Report (DPR) has been completed for around Eighteen (18) projects.
- Co-firing of MSW / Pellets in CPP / IPP's
- Landfill Gas Project (LFG Extraction and CBG Plant) 750m3/hr Landfill Gas into CBG of 335Nm3/hr bottling capacity

140MW

2023

30MW 2016 57MW 2020

Land Fill Based Bio-CNG Plant

Biogas plant inaugurated in Hyd, Ramky Enviro calls it largest in India

A biogas plant was inaugurated at the Hyderabad Integrated Municipal Solid Waste site in Jawaharnagar on Wednesday. Ramky Enviro Engineers Limited claimed that this is one of the world's first and India's largest such plant. The project focuses on the conversion of landfill gas into compressed biogas as an automotive fuel.

short by Deepika Bhatt / 28 Oct, 2021

MSW Incineration Based WTE Plants in India

S.N	PLANT	RDF / MSW QTY (TPD)	POWER OUTPUT (MW)	Commissioned
1	Shriram Energy	1 x 350	6.0	2007
2	Timarpur Okhla Waste Management Private Ltd.	3 X 450	21.0	2015
3	East Delhi Waste Processing Company (P) Ltd.	1 x 550	12.0	2017
4	Delhi MSW Solutions (P) Ltd.	2 x 600	24.0	2017
5	Essel Infra	1 x 600	11.5	2017
6	Hyderabad MSW Energy Solution Pvt. Ltd.	2 x 600	27.0	2020
7	Jai Bharat Maruti	1 x 550	10.0	2022
8	Abellon	1 x 400	07.5	2022
9	Jindal Urban Waste Management	2 x 600	22.0	2022
10	Tehkhand Waste to Electricity Project Ltd.	2 x 600	25.0	2022
		8600	166	
	AVANI-GAKDE			

Waste Generation – Indian scenario

• Total Municipal Solid Waste Generation

- ~62Million Tones / annum (100MillionTPA Prediction for 2022 as per MoHUA & MoEFCC)
- 1.7Lakhs TPD
- 90% of the waste is collected (56MTPA) and the remaining 10% of the waste is not collected (6MTPA).
- From the collected waste, 20% of the waste is used for processing (11MTPA) and the remaining 80% is dumped in an open dumb yard (45MTPA)

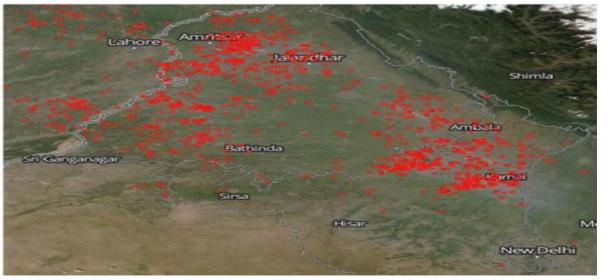
• Power Generation Potential

- ~56Million Tones / annum (1.4Lakhs TPD 5800TPH)
- Average power output is in the order of 2000MW (1700MW to 2600MW)
- The present power generation in India is around <200MW

AVANT-GARDE

- Other Waste
 - \sim E-waste (2.0MTPA as of 2016 and will be around 5.0MTPA in 2020)
 - Biomedical waste (0.2MTPA)
 - Hazardous waste (8.0MTPA)

Source: Internet


Biomass Waste (Agricultural Residue) – Indian scenario

- Punjab produces around 19 to 20 million tons of paddy straw and around 20 million tons of wheat straw every year. 85 to 90% of the straw is burnt in the field.
- The Central Electricity Regulatory Commission (CERC), under the Ministry of Power, has already notified favorable tariffs to biomass-based power plants.
- In Punjab, this tariff has been determined at Rs 8.17 per unit, and is even higher than competing sources of renewable energy, such as solar energy or wind-based power projects.
- There is a huge potential of power generation to an extent of 5000 to 6000MW of power.

AVANT-GARDE

Source: From Internet.....

Specific Experience on 100% Agricultural Residue Projects

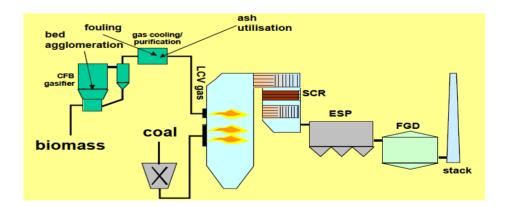
- Kalpa Taru -1
- Kalpa Taru -2
- Shree Jyothi Bio -
- Viaton Energy
- Green Infra
- Star wire
- Indeen Bio
- Radico Kaithan

- 7.5MW Mustard Stalk fired Power Plant
- 6.0MW Mustard Stalk Fired Power plant
- 7.5MW Mustard Stalk Fired Power plant
- **10MW Cotton Stalk Fired Power Plant**
- 8.0MW Mustard stalk fired Power Plant
- 10MW Mustard Stalk Fired Power plant
- 9.0MW Mustard Stalk Fired Power Plant
- 6.3MW Co-generation plant (cotton Stalk / Mustard Stalk)

-

-

-


-

-

Biomass (Agricultural Residue) Co-firing in Boilers

- Direct Method
 - Blending the biomass and coal in the fuel handling system and feeding blend to the boiler
 - Separate fuel handling system for the biomass, and thus no impact to the conventional coal delivery system
- Indirect Method
 - Firing with derived Fuels (Briquettes / Pellets)
 - Bio-gas through gasification Process

Some Bio-mass fuels used ...

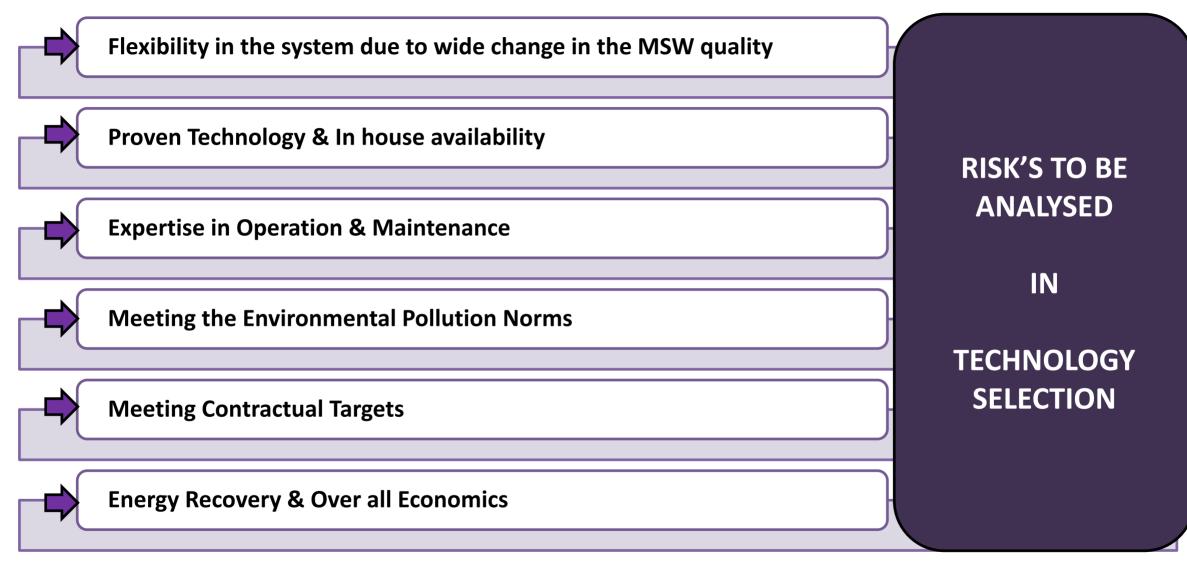
- Sugarcane Bagasse
- Cane Trash
- Briquette
- Rice Husk
- Rice Straw
- De Oiled Bran
- Juliflora (wood)
- Mustard stalk
- Cotton stalk
- Bengal gram stalk
- Chilli stalk
- Tapioca Skin / Sticks

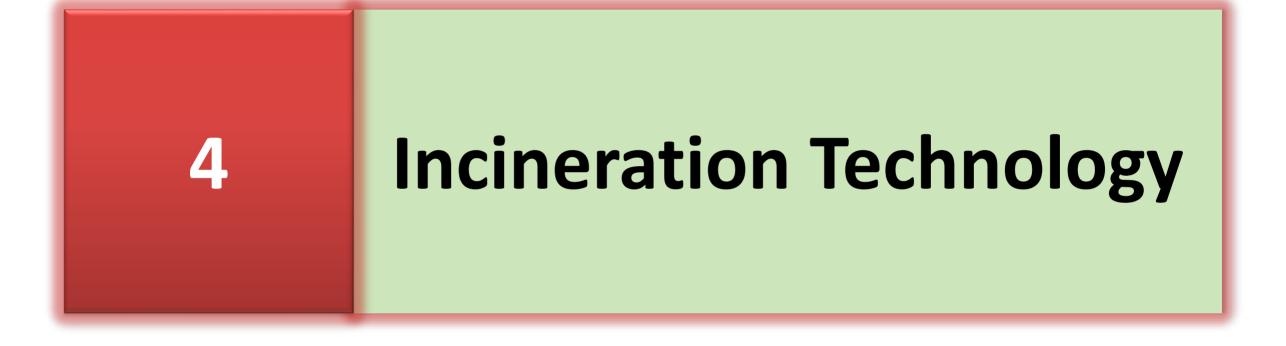
AVANT-GARDE

- Palm Oil Mill Effluent
- Empty Fruit Bunches
- Palm shell
- Coconut shell
- Coconut coir pith
- Woodchips
- Saw dust
- Ground nut shell
- Casuarina woodchip
- Subabul wood
- Poultry litter
- Municipal Solid Waste
- Refuse Derived Fuel
- Cow & Camel Dung

- Corn Cobs
- Sun flower husk
- Bajra Stalk
- Casurina Root
- Eucalyptus Bark
- Tumma Wood
- Gliricidia Wood
- Cashew Waste
- Rubber Wood
- Coconut Fronts
- Palm Fibre
- Spent Wash
- Bagasse pith
- Furniture Shavings

Have rich experience in handling most of the Bio-mass fuels available

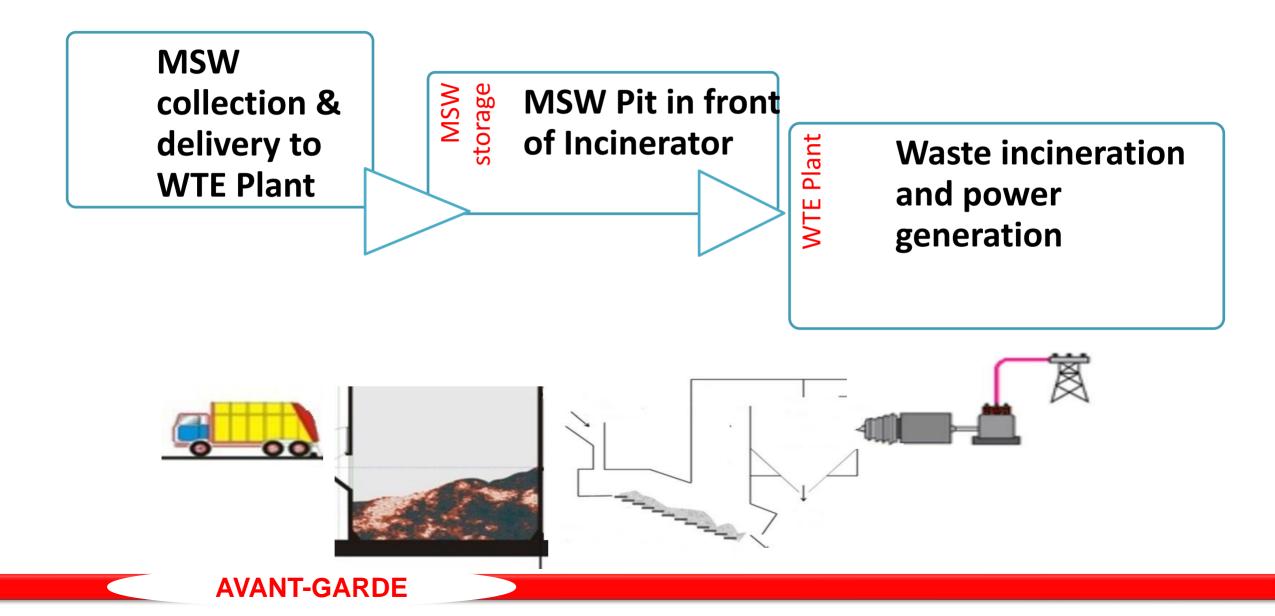



WTE – Conversion Technologies

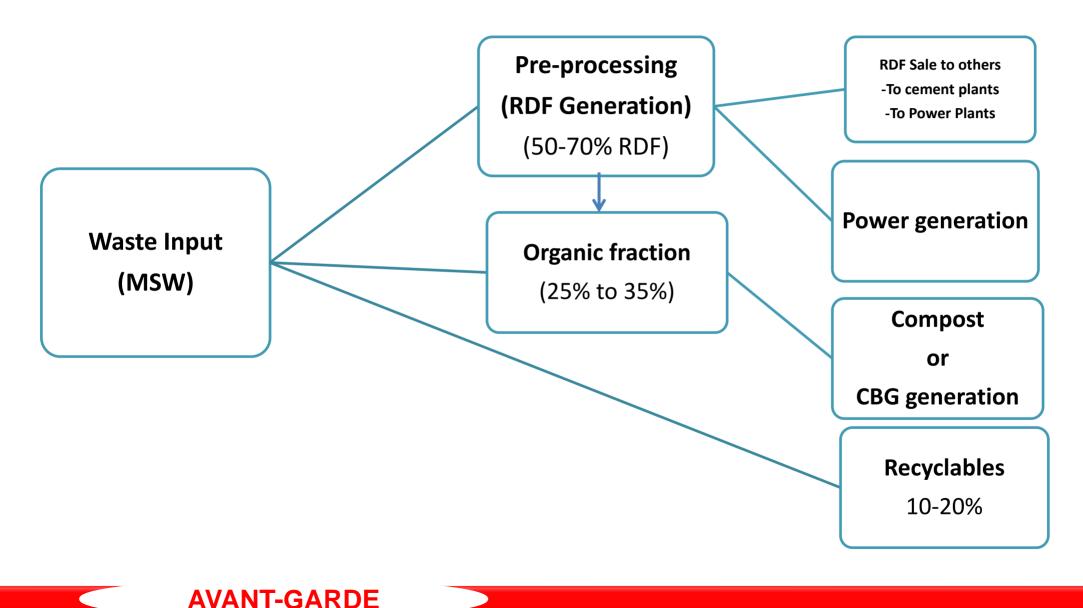
There are various Process / Technology available in MSW based WTE

- Biological Processing Technology (Composting, Bio-Methanization, etc)
- Thermal Conversion Technology Drv Waste **INCINERATION** GASIFICATION **PYROLYSIS** PELLETIZATION Fuel gas / Oil **Fuel Gas** Heat RDF • Heat Steam • Heat Generation • Steam / Hot • Steam / Hot Electricity water water • Electricity • Electricity **AVANT-GARDE**

Technology - Selection Basis



Incineration


- Incineration Technology is a well developed technology followed in many countries from past few decades. In India also recently, few plant are in continuous operation with this technology.
- Incineration is the Engineered process of controlled burning / combustion of waste at a high temperature, in the presence of oxygen.
- Incineration of MSW is divided in to two broad categories
 - Burning "as received" waste.

- Burning "pretreated" waste (Converting in to <u>RDF</u> Refuse Derived Fuel)
- Burning of the "as received" waste requires little or no pretreatment. This is termed as **Direct Mass Incineration (DMI)**. Burning of pretreated waste, requires considerable amount of treatment process.

Direct Mass Incineration

MSW to RDF and Energy Generation

Advantages of Incineration Plants

08

Investment cost can be offset by heat recovery / sale of energy

07

Ash residue is usually do not protrude, they are sterile & inert

06

Gas discharges can be well controlled to the permissible norms

05

AVANT-GARDE

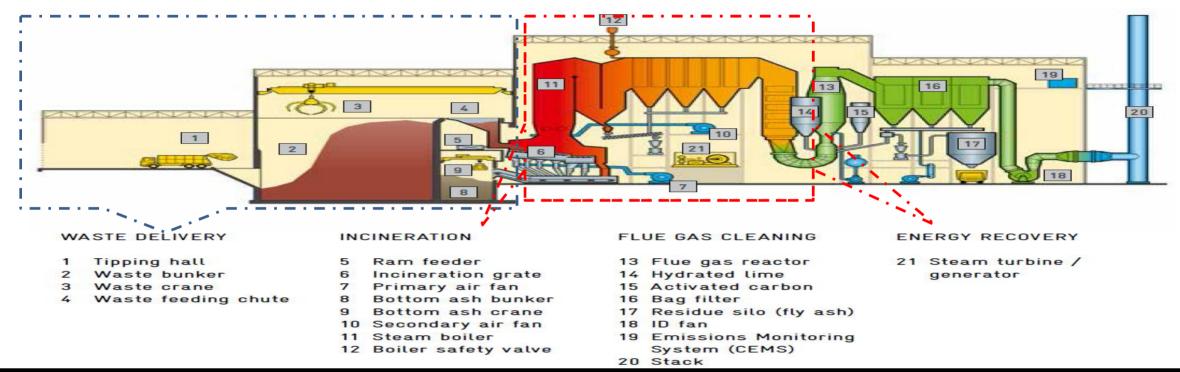
Incineration is carried out at generation site

01

It address three sets of environmental issues in one stroke – <u>Pollution issues due</u> to open dumping, Effective Land use & Environmental impacts of fossil power plants

02

Volume reduction (approx. 85 to 90% in volume) and hence Small disposal area required

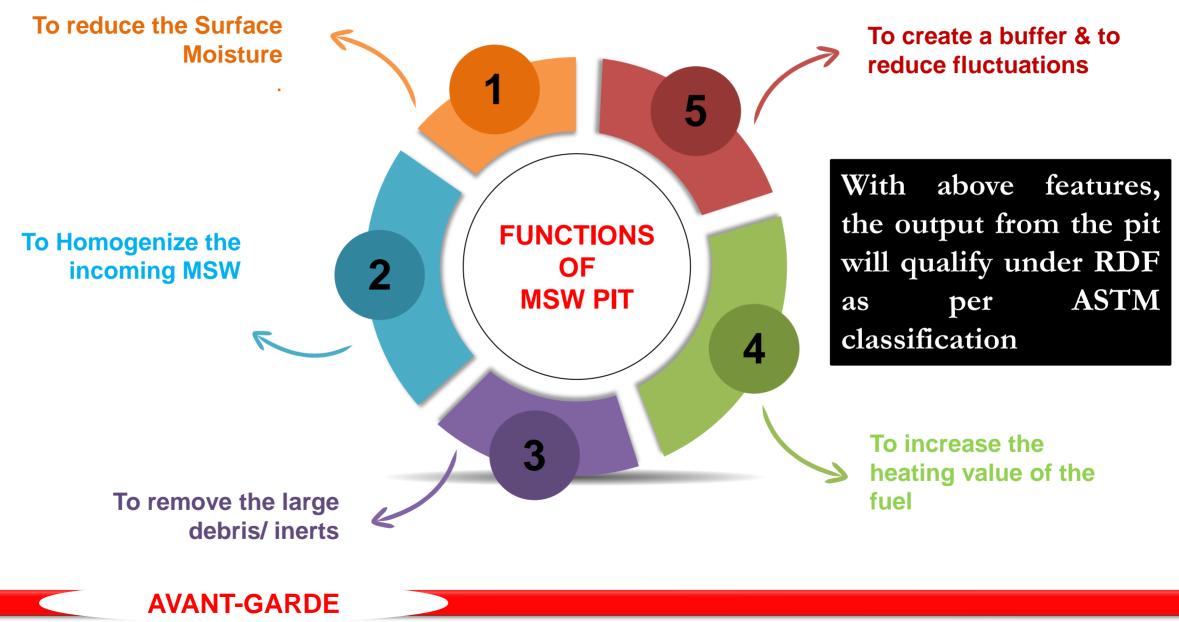

03

Waste Reduction & Destruction is immediate, no long term wait is required

04

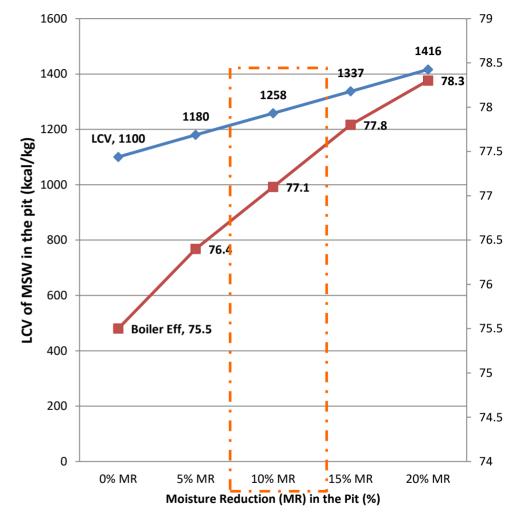
No foul smell and infections to the public

WTE Plant - Systems


- MSW handling, Pre-processing and feeding system.
- Incineration System (MSW Firing & combustion system)
- Heat Recovery System from the flue gas & Power Generation System.

- Flue Gas Cleaning & Disposal system
- Ash Collection, Handling, Storage & Disposal system
- Leachate Collection and disposal system

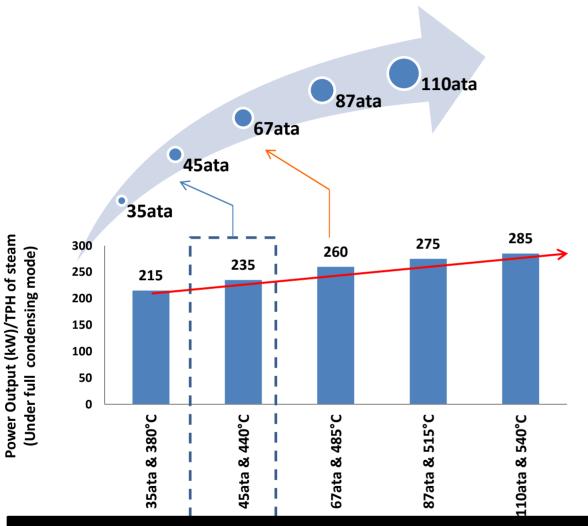
MSW Handling & Feeding System


MSW Pit in the WTE Plant

MSW storage in pit - Calorific Value Improvement

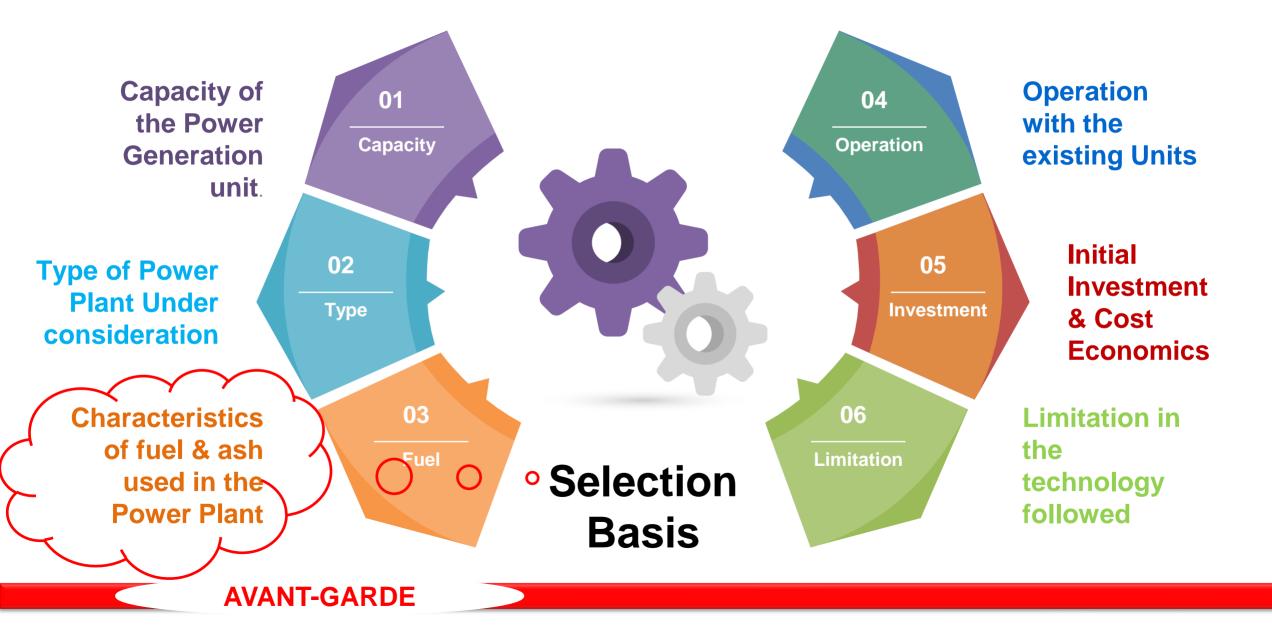
	In coming	MSW with 5%	MSW with 10%	MSW with 15%
Composition	MSW	MR in Pit	MR in pit	MR in pit
Carbon (%)	14.65	15.34	16.02	16.71
Hydrogen (%)	2.16	2.26	2.36	2.46
Oxygen (%)	10.12	10.57	11.07	11.54
Moisture (%)	48.35	45.93	43.52	41.10
Sulphur (%)	0.12	0.13	0.13	0.14
Ash (%)	23.60	24.70	25.81	26.91
Nitrogen (%)	1.00	1.07	1.09	1.14
Total (%)	100	100	100	100
LCV (kcal/kg)	1100	1180	1258	1337
GCV (kcal/kg)	1495	1565	1635	1705

Leachate collection quantity, Greatly depends on –The No. of storage days, Storage height, Surface moisture, Compaction, drainage etc.


MSW / RDF Classification as per ASTM

Туре	Description
RDF 1: MSW	Municipal solid wastes used as fuel in as- discarded form
RDF 2: Coarse RDF	Municipal solid wastes processed to a coarse particle size
RDF 3: Fluff RDF	Municipal solid wastes processed to a particle size such that 95% by weight passes through a 2-inch.
RDF 4: Dust RDF	Municipal solid waste processed into a powdered form
RDF 5: Densified RDF	Municipal solid waste that has been processed and densified (compressed) into the from of pellets, slugs, cubettes, or briquettes
RDF 6: RDF Slurry	Municipal solid waste that has been processed into a liquid fuel
RDF 7: RDF Syngas	Municipal solid waste that has been processed into a gaseous fuel

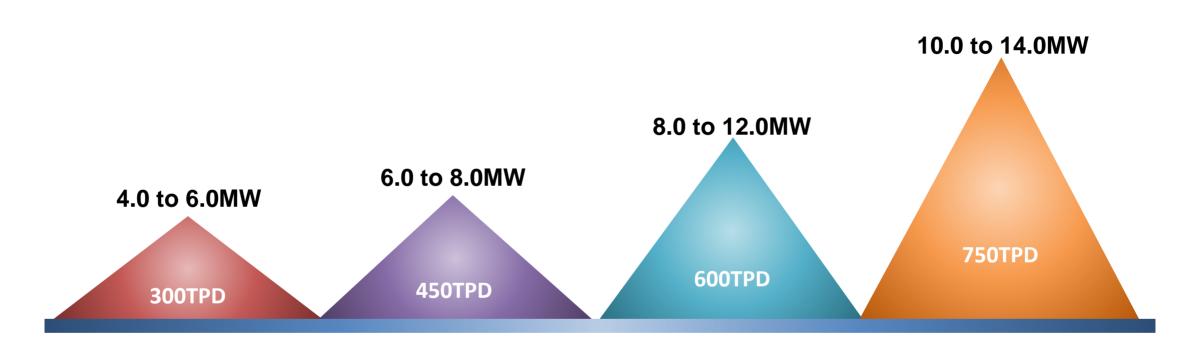
History of Steam Cycle pressure



- There is a gradual increase in the power cycle parameters across the globe
- Today there are many small capacity power plants operating at 87ata and 110ata.
- However, WTE power plants normally operate a power cycle levels of 45ata & 400°C.

The data furnished above is preliminary in nature. Contact AVANT-GARDE for precise / more detail

Selection of Boiler Steam Parameter



Characteristics of MSW

	Indian Coal	Bagasse	Rice Husk	MSW	Parameter Variations in MSW (%)	
SiO ₂	55-65	40-55	80 -92	45-60		
Fe ₂ O ₃	03-06	03-08	01 - 03	03-12	Moisture	15 to 80
Al ₂ O ₃	08-20	05 - 10	00-05	06-12		
CaO	01-03	05 - 08	02-04	07-16	Ash	20 to 60
MgO	01-02	01 - 04	Traces	01-02		
Na ₂ O	00-01	00-02	00-01	02-15	Sulphur	0 to 4
K ₂ O	00-01	00-08	00-03	05-25		
SO ₃	00-03	Traces	Traces	00-05	Chlorine	0 to 2
P ₂ O ₅	00-02	01 - 04	Traces	10 -25		
Cl	0	< 0.1	<0.1	00-02	LCV (kcal/kg)	800 to 1800
IDT	1400	1100	1400	700 - 800		

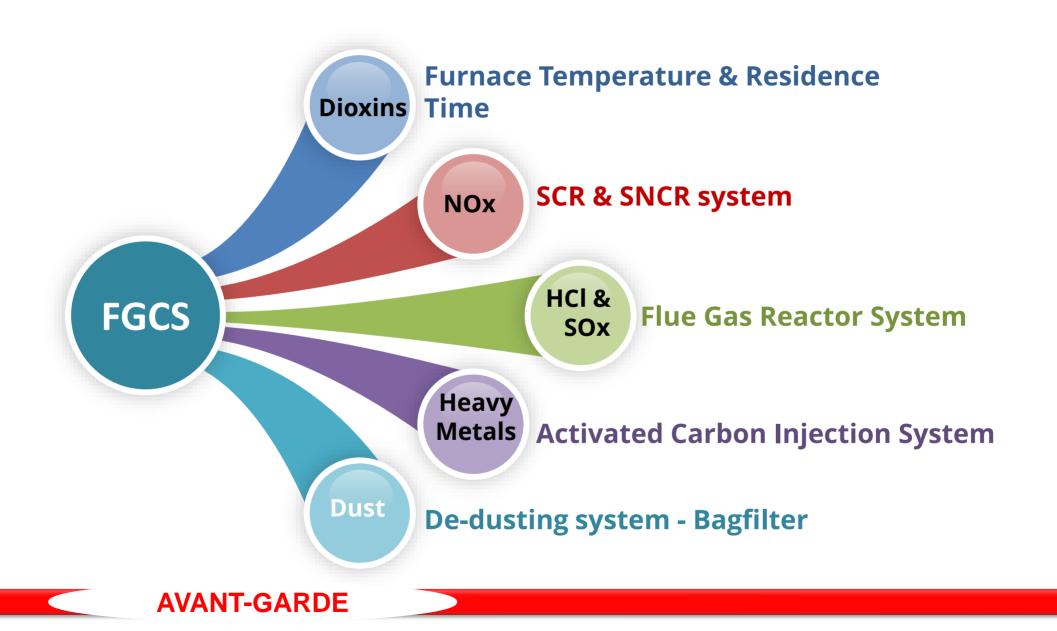
High Percentage of Fe2O3, Na2O, K2O & Cl makes the fuel, a very high fouling, slagging and corrosive nature and hence a lower pressure and temperature is considered for the WTE Plant

Power Generation from WTE Plant

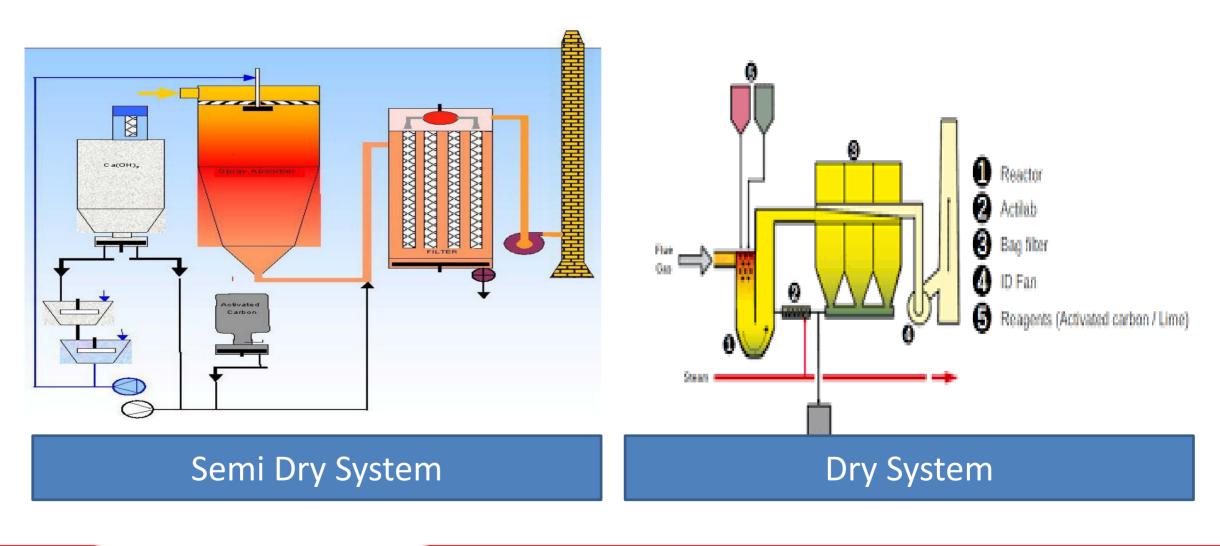


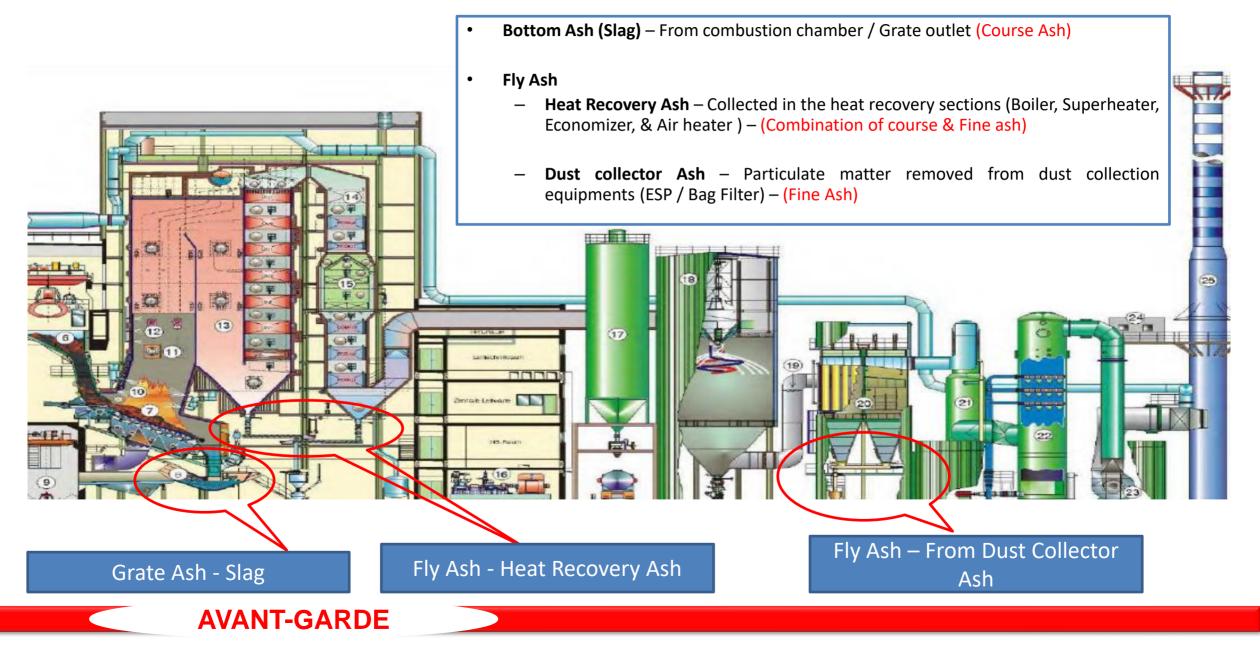
Power variation depends the calorific value of the MSW 2

Capacity of the plant is fixed based on the MSW availability

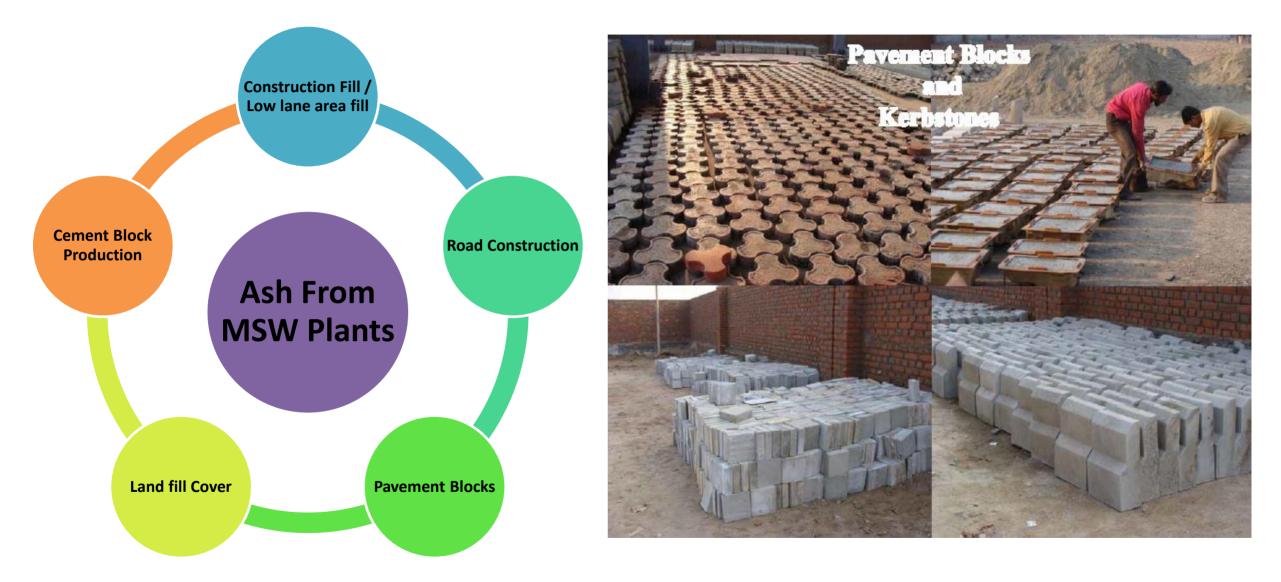


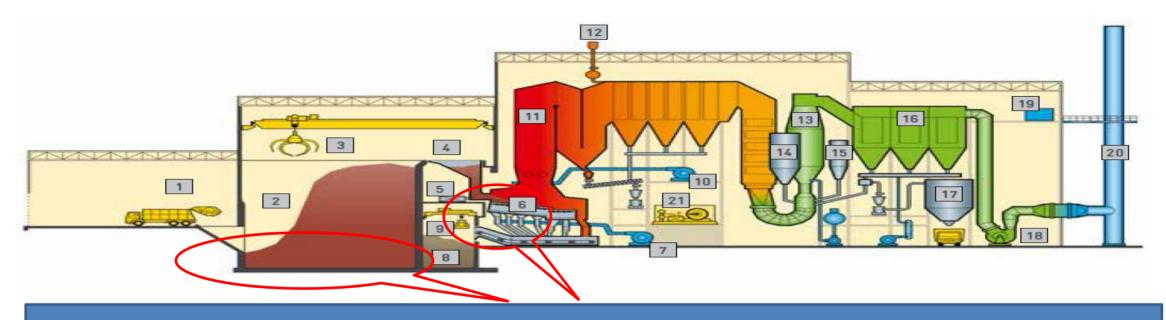
Configuration of the plant depends on the plant capacity & Economics


Gas Cleaning & Disposal System


Emission Standard – SWM 2016 Rules

Parameter	Unit	Limits as per SWM Rules, 2016	International Standards		
Particulate Matter	mg/Nm ³	50	10		
Nox	mg/Nm ³	400	200		
SO2	mg/Nm3	200	50		
HCI	mg/Nm ³	50	10		
HF	mg/Nm ³	4	-		
Dioxins & Furans	ngTEQ/Nm ³	0.1	0.1		
CO	mg/Nm ³	100	50		
TOC	mg/Nm ³	20	-		
Cd + Th + their Compounds	mg/Nm ³	0.05	-		
Hg and its compounds	mg/Nm ³	0.05	-		
Sb+As+Pb+Cr+Co+Cu+M n+Ni+V+their compounds	mg/Nm ³	0.5	0.5		
(TEQ: Toxic equivalents)					

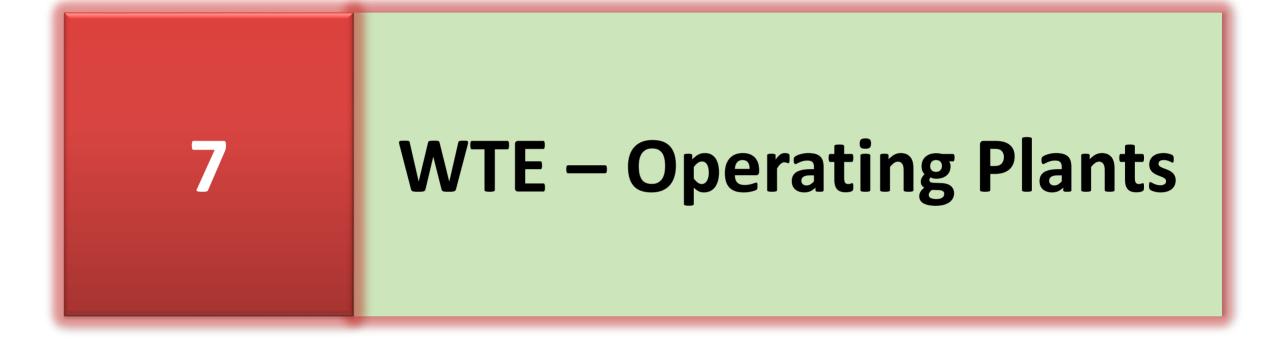

Flue Gas Cleaning System


Ash Collection and Disposal System

Ash Reuse Options

Leachate System

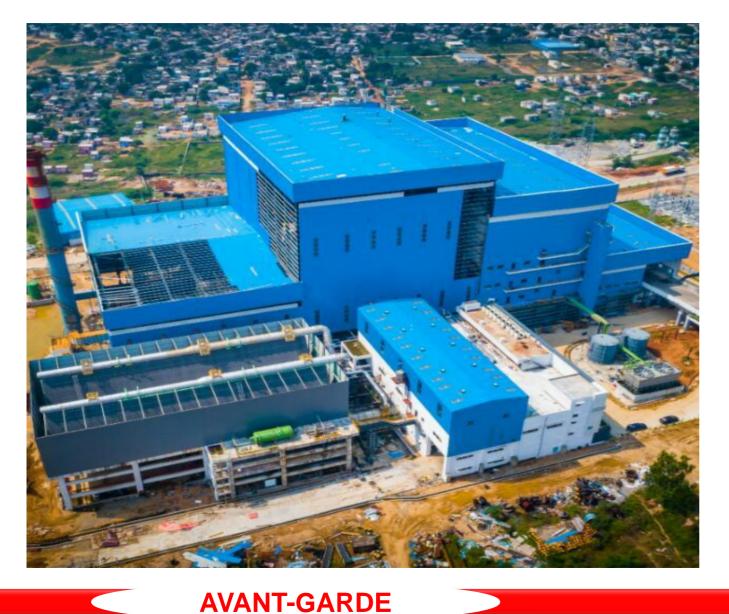
- Leachate drainage system.
- Leachate storage and discharge system.
- Leachate treatment system.
 - Lechate Concentration Plant (The by product can be mixed with the incoming MSW and fired in the boiler and the clear water can be used in the FGD Plant)
 - Biological treatment followed by RO system. (Further Energy recovery from the Leachate to an extent of 10 to 15kW/m³/hr is possible)

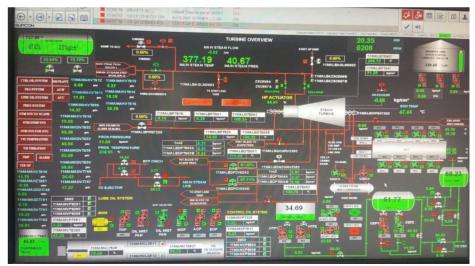


WTE Plant

- Water consumption 225 to 250kl/day in case of ACC & 1300 to 1400kl/day in case of WCC (Typical values for a 750TPD WTE Plant)
- In house power consumption will be around 15 to 18%
- Plant Availability 70% for 1st Year, 75
 85⁺% from 2nd Year Onwards
- Load factor 80 90%

- Manpower Approx 60 100
- Project Schedule 20 to 24Months from Boiler & TG ordering.
- Cost of the WTE plant will be around 15 to 18Cr / MW
- Land Requirement 10 to 20Acres
- Chimney height around 60mts


Few MSW based WTE Plants in India



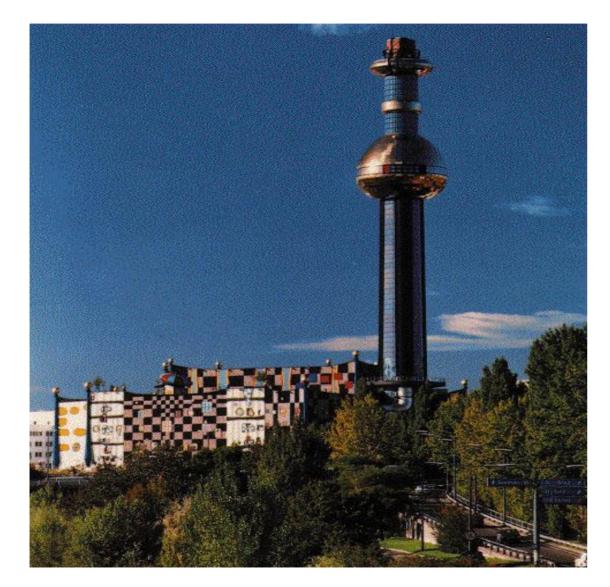
Few MSW based WTE Plants in India

Largest WTE Plant in the world

AVANT-GARDE

Source: Taken from Internet

Few WTE Plant in the world



Source: Taken from Internet

Few WTE Plant in the world

AVANT-GARDE

Source: Taken from Internet

SUMMARY

(MSW - A new beginning for an old source)

- DMI with Energy Recovery is one of the best WTE technology suitable for wide varying fuel like MSW, for effective disposal of waste. There are more than 1000 WTE plant with DMI technology in operation world wide. In India, around Ten (10) plants are is successful operation and few plant are under construction stage.
- In the incineration technology, there is a volume reduction to an extent of 90% and the gasses are let out from the chimney, satisfying the pollution norms. Most of the ash from the WTE plant can used.
- There is a power generation potential from the MSW in the order of 270 to 445kW / TPH of MSW depending on the LCV.
- With Tipping Fees, Capital Subsidiary from the Government & Export power cost above 7.0Rs / unit, the DMI based WTE project becomes viable with a pay back less than 5.0years.

Why AVANT-GARDE ?

- Highly experienced team (SME's) in all disciplines
- Analyze various technologies and select optimum solution for a specific project.
- Tailor made solutions for each project.

- Optimized Layout Preparation with out compromising on the safety aspects
- Providing Innovative solutions in the WTE systems

Contacts of Our Personnel

- Mr. S. Sivakumar Chief Operating Officer
 - <u>ssk@avant-garde.co.in</u>
 - +91 9840040600
- Mr. S. Balaguru Chief Technology Officer
 - <u>sbalaguru@avant-garde.co.in</u>
 - +91 9840044300
- Mr. J. Gladstone Evans HOD Thermal
 - jgladstoneevans@avant-garde.co.in
 - +91 9840046888
- Mr. S. Ilango
 - silango@avant-garde.co.in
 - +91 9940066663

Thank you