

Waste heat recovery: Alfa Laval Micro

Uday Mahajani Pratik Lele

- November 15th 2022
- Hyatt Centric, N. Delhi

Waste heat source

- Waste Heat:
- The heat generated due to combustion or Chemical reaction and dumped into atmosphere, which can be used for useful purposes to generate energy

- Sources:
 - Flue Gases
 - Vapour streams
 - Liquid effluents

CHP vs conventional generation

- Overall efficiency

CHP vs conventional generation

- CO₂ emissions, example 5 MW natural gas

Energy balance - Engine CHP

CHP applications

Heat Recovery for Hot Water Generation

- Horizontal & Vertical installation (Gas Turbine)

Heat Recovery for Steam Generation

- Evaporator with Cyclone + Economizer (Gas Turbine)

Heat recovery positions

Heat recovery positions

Our heat recovery portfolio for engine CHP

- And typical design data

Heat recovery position	Product	Media (prim / sec)	Typical primary inlet	Typical primary outlet	Typical primary pr. drop
LT Lube oil loop	GPHE or BHE	Glycol / Water	60-80 °C	50-70 °C	50.00 kPa
HT Jacket water loop	GPHE or BHE	Glycol / Water	90-105 °C	80-95 °C	50-90 KFA
Exhaust gas	Micro or GTL	Exhaust gas / Water-Oil- Steam	300-550 °C	120-180 °C	1000-3000 Pa

Alfa Laval WHR portfolio

- Applications

Alfa Laval Micro

The Micro is a compact exhaust gas heat exchanger designed for waste heat recovery from small engines as well as from small gas turbines and clean process flue gas. It can also be used as an economizer/condensing economizer for gas or diesel fired boilers.

Alfa Laval Micro

- Technical video

Why Micro? - Micro vs Conventional Technology

	Alfa Laval Micro	Shell & Tube (conventional S&T design)
By-pass	No external by-pass needed	100% external by-pass needed
Dry-run	Dry-run possible/can be used for pyrolysis cleaning of the heating surface	Not possible
Integrated cleaning device	Can be supplied with an integrated cleaning device making it possible to clean the heating surface either by air, steam or water during operation	Normally not an option
Integrated regulation damper	Includes an integrated regulation damper by which a part of the exhaust gas can be led outside the heating surface e.g. for regulation purposes	Normally not an option
Insulation	Integrated 150 mm insulation	External insulation needed
Noise reduction	-10 dB (Lwp) average, reduction over entire sound spectrum	Additional silencer usually needed

Micro

Heat exchanger

Exhaust gas side:

Maximum inlet temperature	600 °C (dry run 530 °C)
Minimum outlet temperature	Depending on engine fuel and exhaust gas composition

Media side:

Through the tubes	Water, TEG or TFO
Quantity	Max. 160,000 kg/h
Maximum operating pressure/design pressure	39 bar(g)/42 bar(g)
Maximum outlet temperature, water	247 °C
Maximum outlet temperature, TEG	247 °C
Maximum outlet temperature, TFO	340 °C
Operatel	

General:

Standard norm (Industrial)	PED (type approved) or GB
Class (Marine)	DNV/GL/ABS/LLOYDS etc.
Test pressure carbon steel	110 bar(g)
Test pressure stainless steel	102 bar(g)

Steam generator

Exhaust gas side:

Maximum inlet temperature	600 °C (dry run 530 °C)
Minimum outlet temperature	Depending on engine fuel and exhaust gas composition
Media side:	
Through the tubes	Water/Steam
Quantity	200 to 3,000 kg/h
Maximum pressure	42 bar(g)
General:	
Standard norm (Industrial)	PED (type approved) or GB
Class (Marine)	DNV/GL/ABS/LLOYDS etc.
Test pressure carbon steel	110 bar(g)
Test pressure stainless steel	102 bar(g)

Geometry

Weight incl. insulation	400 – 3,900 kg
Diameter (incl. insulation)	950 to 1,870 mm
Height (incl. insulation)	1,700 to 2,800 mm
Media inlet/outlet header (flange)	DN100
Exhaust inlet/outlet header (flange - DIN86044)	DN450 to DN1000
Insulation	150 mm

- Highly efficient
- Compact and low footprint
- Utilizing waste heat from flue gases to improve thermal efficiency and to generate cost savings
- Highly applicable to be installed after small gas and diesel engines as well as gas turbines
- For engines/gas turbines using either gas, diesel oil or HFO as fuel (engines/turbines having a capacity of up to approx. 4,000 kWe) as well as for clean process flue gas applications & as economizer for gas fired industrial boilers

18/11/2022 | © Alfa Laval

- Suitable for a number of various medias such as hot water, TEG and TFO as well as for generation of steam.
- Characterized by having a very low inertia
- Reaches operational temperature within minutes and reacts extremely fast if adjusted or at load changes.

 Designed with an integrated regulation damper ensuring that a certain amount of the flue gas, can be led outside the heating surface, providing unique possibilities for adjustments depending on required output.

- Includes internal regulation damper as well as electrical actuator
- Natural circulation (steam circulation pump can be avoided)
- Both outdoor & indoor installation
 possible
- Integrated cleaning device for compressed air, water or steam as optional
- No need for external by-pass dryrun operation possible (used for pyrolysis cleaning)

Arrangement

 Comes with a heating surface consisting of a number of co-axial tubes, placed in a vertical or horizontal cylindrical shell plate

Selected references Alfa Laval Micro

www.alfalaval.com

Hotel Industry – DTC Ecoenergia, Mexico

Industrial process – Innowatio, Italy

Aalborg Micro 814

Hot water application after gas engine

▲ Aalborg Micro reference menu

INNOWATIO

District heating – MAN Diesel & Turbo, Denmark

Process flue gas – BMW, China

Aalborg Micro 406/410

3 x Aalborg Micro 406 and 2 x Aalborg Micro 410 used to recover heat from aluminium melting furnace to generate hot water.

▲ Aalborg Micro reference menu

Power Generation – China

Aalborg Micro 422

11 x Micro 422 with cyclone for steam production

▲ Aalborg Micro reference menu

Boosting electricity production with a smaller CO₂ footprint

- Southeast Asia

"...said by customers about the Micro..."

"...significantly cheaper than our usual supplier for this type of system" TLV Euro Engineering, UK

"...there are not many products out there that do what the Micro does" Aggreko, UK

"...we could basically remove the silencer from the system after installing the Micro" Secco, Argentina "...it's the single most interesting thing I've ever seen in the area of steam boilers" Capstone, US

