# GLOBAL IGCC DEVELOPMENT AND DEPLOYMENT

DR ANDREW MINCHENER OBE GENERAL MANAGER IEA CLEAN COAL CENTRE

MISSION ENERGY: GASIFICATION INDIA DECEMBER 2020

LEAN COAL CENTRE

## SCOPE OF PRESENTATION

ho we are, what we do and why we do it

asification for clean coal power generation: advantages and allenges

arning from early demonstration projects

chnology champions

few words on coal to future fuels

licy considerations



Technology Collaboration Programme

er: Views, findings and publications of the IEA Clean Coal Centre do not necessarily represent the views or f the IEA Secretariat or its individual member countries.



## DR ANDRE

General Manag

#### WHO WE ARE



Technology Collaboration Programm by lea

- EIEA Clean Coal Centre is part of a work of autonomous collaborative tnerships focused on a wide range of ergy technologies known as Technology llaboration Programmes (TCPs)
- TCPs are organised under the auspices of International Energy Agency (IEA), but the Ps are functionally and legally autonomous

- We are funded by national governm (contracting parties) and by corpora industrial organisations (sponsors)
- We are dedicated to providing independent information and analys how coal can become a cleaner sour energy, compatible with the UN Sustainable Development Goals

#### **OUR MEMBERSHIP**

#### IEA CLEAN COAL CENTRE











ANGLO AMERICAN THERMAL COAL



BEIJING RESEARCH INSTITUTE OF COAL CHEMISTRY



BHEL





**ELECTRIC POWER** PLANNING & ENGINEERING INSTITUTE OF CHINA



SUEK



TRALIA

APAN



H AFRICA

## WE SUPPORT THE SUSTAINABLE DEVELOPMENT GOALS

operating framework is designed to identify and publicise the best cice in every aspect of the coal production, transport, processing and ation chain within the rationale for balancing security of supply, dability and environmental issues, thereby countering any unwanted cts to ensure the wellbeing of societies worldwide.



onsider policy and regulatory issues, financial resourcing, market issues, nology development and deployment including efficiency improvements, ring greenhouse- and non greenhouse-gas emissions, reducing waters, ensuring poverty alleviation through universal access to robust and ole electricity, and social licence to operate.

















## RECENT OUTPUT FOR THE STUDIES PROGRAMME

#### Reports issued within the last twelve months

- Nodularisation systems for clean coal
- pdate on finance for coal-fired power plants
- he economic and strategic value of coal
- Vater issues for coal-fired power plants
- ower plant design and management for unit cycling and load fluctuation
- upport mechanisms for cofiring biomass
- Slobal coal power fleet efficiency improvement
- Inderstanding the role of HELE coal in the energy trilemma
- eneficial uses of coal fly ash
- lectricity market designs for a reliable grid and their impact on coal plant

## **ONGOING STUDIES**

#### Studies in preparation and under review

lon-energy products from coal - an update

IELE Roadmap

he impact on and perspective for coal under ETS or carbon tax schemes

ncreasing the efficiency of pulverised coal fired power plant

otential markets for high efficiency and low emissions (HELE) coal-fired

echnologies

igital transformation of the coal sector

CUS status, barriers and potential

oking coal: the strategic raw material

echnology developments for cofiring biomass with coal

lydrogen production from coal

#### POLICY AND MACROECONOMIC DRIVER

## Environmental Policy

- · Climate targets
- Technology neutral policies

## Electricity sector expansion

- · High annual growth
- · Electricity 'starvation'
- Reserve margins

## Macroeconomic issues

- · Higher population growth
- · Low per capita income
- · Financial and business drivers

#### IGCC NEAR TO MEDIUM TERM POTENTIA

SAKAMOTO 2011)



- IGCC produces a synthetic f gas that can be modified to meet operational needs
- As gas turbine efficiencies a improved, this offers opportunity to raise power plant efficiency
- Also offers opportunity to so composition of syngas, remo-CO2 from gas stream and us hydrogen to drive a fuel cell

## CHARACTERISTICS OF IGCC



- Carbonaceous feedstock is gasificand the fuel gas produced (CO and is purified to remogaseous pollutant particulates before being fired to drive gas turbine-based generator
- Heat recovered from the gas turbine exgas can be used to steam to drive steam turbines for addition

## PROVEN GASIFICATION OPTIONS (NETL 2013)

feed entrained • slurry fed w gasifier



entrained flow gasifier



· moving bed gasifier fluidised bed ga



#### **IGCC TECHNOLOGY DEMONSTRATIONS**

Buggenum, The Netherlands

Wabash River, USA

Vresova, Czech Republic

Polk Power, USA

Puertollano, Spain

EAGLE, Japan

Nakoso, Japan

Edwardsport, USA

Osaki Coolgen

Huaneng, China

Taean, South Korea

## FIRST MAJOR COAL-FIRED IGCC POWER PLANTS ESTABLISHED WORLDWIDE

| IGCC                 | Capacity(MWe)                                                               | Operational    | Issues                                                                                                             | Availabilit                                              |
|----------------------|-----------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ggenum,<br>therlands | 253 (entrained flow)                                                        | 1994-2013      | Syngas/waste water, comb cycle opn,leakages                                                                        | <70%                                                     |
| bash River, USA      | 262 (entrained flow)                                                        | 1995-2015      | Component<br>cracking/corrosion/wear,<br>slag blockages, gas turbine<br>hot spots                                  | <79%                                                     |
| rsova, Czech Rep     | 400 (fixed bed) 160 (Entrained flow to process wastes from fixed bed units) | 1996-<br>2006- | Limited load following, lack<br>of fuel flexibility, issues<br>with pollutant control prior<br>to 160MWe installed | Limited loa<br>following,<br>lack of fuel<br>flexibility |
| k Power, USA         | 260 (entrained flow)                                                        | 1996-2017      | Corrosion/erosion/fouling                                                                                          | <82%                                                     |
| ertollano, Spain     | 335 (entrained flow)                                                        | 1998-2015      | Corrosion/erosion/fouling, gas turbine vibrations                                                                  |                                                          |

## LESSONS LEARNED AND IMPLICATIONS FR THE EARLY PROJECTS

Inappropriate design and integration approaches for different pieces of process equipment, coupled with inadequate operational procedures, led to poor operation

- Tighter the integration of ASU, gas turbine and gasifier, the more efficient the IGCC can be but operational availability will be highly vulnerable to an outage of any one of these systems, causing knock-on effects
- Performance of some components of the technology were very susceptible to changes in quality and composition of various coal types and other feedstocks.
- Operation of individual pieces of equipment have not followed earlier predictions based on small scale results
- Adapting the gas turbines to run on either syngas exclusively or a combination of syngas and natural gas may be problematic for future plant



## ANENG GREENGEN IGCC PROJECT



 The first phase of Huaneng's "Green Power Plan" includes the Tianjin IGCO Power Station, with an installed capaci 2650 MW.

- Operational performance has been g and in 2018 it achieved continuous operation of 3,918 hours, breaking th world record.
- Since its inception, the project has generated more than 5.8 billion kWh green electricity.

## THREE PHASE DEMONSTRATION TESTING AT THE EAGLE IGCC

(SASATSU 2013)

#### Phase 1 (1995–2006) Gasifier development

elopment of oxygen-blown entrained flow gasifier

blishment of gas clean-up technology

Phase 2 (2007-09) Multiple utilisation and coal diversification

ture of carbon dioxide from coal gas stream through chemical absorption

stigation of alternative coal feedstocks, including high ash melting

ints)

earch into trace element behaviour

Phase 3 (2010-13) Next generation development, including CCS

on dioxide capture by physical absorption at higher pressures

ing of advanced developments

ey of innovative CO2 capture technology

#### PAN ESTABLISHES A VIABLE WAY FORWARD



se include the generation of electric power and production of thetic fuels, chemicals, and hydrogen. It considers all polyeration aspects as well as the longer term prospect of using a ifier to produce hydrogen for fuel cell applications

- The EAGLE IGCC projection funded by the Electric Development Compar Japan, in collaboration Japan's New Energy ar Industrial Technology Development Organisa and is based at J-Power Wakamatsu Research Institute in Kitakyushu Japan
- EAGLE stands for Ener Application for Gas, Lie and Electricity. Its goa develop a Japanese-bu oxygen-blown, entrain flow coal gasifier, suita multipurpose applicati

#### NAKOSO AIR BLOWN IGCC AND BEYOND (MAKOT



- More than 16,000 hours of operational testing to end
- Plant now operated on a commercial basis by Joban PowerCo
- Nakoso achieved 42% efficachieved with a 1200oC D turbine
- MHPS suggests that a 480, net plant would achieve 48 efficiency with a G-class ga turbine and 50% for a 580, unit with a J-class machine
- Tokyo Electric Power Co. is building two new 540 MWe fired IGCC plants in Fukush Prefecture

## COMMERCIAL OPERATION OF IGCC IN JAP



- IGCC offers potential for hig efficiency with very low emissions.
- Nakoso #10 250MWe unit at Joban Power Company in Jap is prime example

#### **OSAKI COOLGEN PROJECT**

ts from EAGLE (Coal Energy cation for Gas, Liquid and ricity) pilot plant

own, entrained flow cation

er 90% CO<sub>2</sub> with a purity of

l<sub>2</sub> to generate power through ells, in addition to gas turbines eam turbines

all goal is IGFC with net nal efficiency of 55% by 2025



Aoki (2018)

CO₂ transp and storac

#### JAPAN IS TAKING FORWARD FUEL CELLS

nerging technology wards zero emission, gh-efficiency coal ower plants



## RANSFORMATION IS NOT MITED TO POWER PLANTS

Electrification of transportation and neating

Digitisation of electricity grids

Elexibility

Smart grids and virtual power plants

Blockchain and distributed generation

Demand side management to manage VRE

Battery storage

Carbon capture, utilisation and storage





## COAL AS A RESOURCE TO PROVIDE LOW CARBON END PRODUCTS

(SEEKING ALPHA, 2012)



## CHINA HAS ESTABLISHED A MAJOR INDUSTRIAL SECTOR FOR CTX



- State first encouraged various coal-to chemical projects to be established, for production of syngas as a building bloop produce ammonia, fertiliser, hydroger methanol
- Cautious development of more comp coal-to-chemicals and coal-to-synfuel (2011-2015)
- Focus on the construction of projects commercial scale clean production, utilisation, processing and conversion calorific-value coal for coal-to-olefins to-mono-ethylene glycol, and coal-to synthetic natural gas. At the same tim plans were developed to expand the C Liquids programme to achieve comme scale capacity.

## CHINA ENERGY A MAJOR TECHNOLOGY DEVELOPER

1Mty direct coal to liquids (2009-)

2Mty indirect coal to liquids (2017-)





## CHINA'S CURRENT AND PLANNED GAS TRANSPORT INFRASTRUCTURE (PLATTS, 2014)



## OTHER PROSPECTS

Tentative approach to establishing coal to methanol in India

Australia-Japan cooperation for brown coal to hydrogen project

Some work in Europe via RWE

# STEP UP THE CASE FOR COAL SINCE IT WILL NEED TO REMAIN AN INTEGRAL PART OF THE GLOBAL ENERGY SUPPLY FOR A LONG TERM SUSTAINABLE FUTURE

## THE IEACCC KNOWLEDGE PARTNERS NETWORK

#### RATIONALE

ow global solidarity ween organisations it have a positive erest in sustainable al utilisation

- Showcase the breadth of our global knowledge partners to ensure better exchange of information and encourage future collaboration
- We are also delighted to note that there is alreated very positive and grown response from companion universities and other organisations to becompart of this network.



**KNOWLEDGE PARTNERS** 

LIBRARY

WEBINARS

**MEMBERSHIP** 











Siemens

The IEA Clean Coal Centre plays an active role in an extensive network of organisations whose work is relevant to our own. This informal association of knowledge partners fa information and results on how to reduce the environmental impact of using coal and enhance energy security in many regions where coal is readily available.

Our knowledge partners are listed below.



South East University







Environmental Protection Engineering Technology Center)

Limited









































**[4]** 手能推進報題研究院

Universidad del Valle









nie

















JD Energy



Lignite Energy Council

IECES (Indonesian



Institute for Chemical











## COUNTRIES WITH IEACCC KNOWLEDGE PARTNERS REPRESENTATIVES

| AUSTRALIA (3)       | BELGIUM (1)        | BRAZIL (1)    | CANADA (3)      | CHINA (15)   |
|---------------------|--------------------|---------------|-----------------|--------------|
| COLOMBIA (1)        | CZECH REPUBLIC (3) | FRANCE (1)    | GERMANY (6)     | GREECE (1)   |
| HUNGARY (1)         | INDIA (7)          | INDONESIA (2) | ITALY (2)       | JAPAN (4)    |
| LATVIA (1)          | MONGOLIA (1)       | POLAND (7)    | RUSSIA (1)      | SLOVENIA (2) |
| SOUTH AFRICA<br>(2) | SPAIN (2)          | SWEDEN (1)    | SWITZERLAND (3) | TURKEY (2)   |
| UK (12)             | USA (18)           |               |                 |              |
|                     |                    |               |                 | 102          |

# KEEN TO BUILD ON OUR EXISTING CONTACTS TO BROADEN AND STRENGTHEN OUR LINKS WORLDWIDE

# TRONG SUPPORT FROM OUR NATIONAL CONTRACTING PARTY MEMBERS AND OUR SPONSORS

